![]() |
Saturday, February 8, 2025 |
Scott, I read with interest your article, "Amortized Loans." At the end of the article you indicate the explanation of how to derive the formulae as being covered in another article. Can you please tell me where I can find this? Thank you very much, Luke, Here is the derivation of the loan formula from scratch: F --> Future Value #1) F0=P #2) F1=P+Pi-A=P(1+i)-A #3)
F2=F1(1+i)-A=P((1+i)^2)-A(1+i)-A #4)
F3=F2(1+i)-A=P((1+i)^3)-A((1+i)^2)-A(1+i)-A #5)
F4=F3(1+i)-A=P((1+i)^4)-A((1+i)^3)-A((1+i)^2)-A(1+i)-A #6)
Fn=P((1+i)^n)-A[((1+i)^(n-1))+((1+i)^(n-2))+((1+i)^(n-3))+....+1]
#7)
y=1+a^1+a^2+a^3+a^4+a^5+a^6+....a^k #8)
y-1=a^1+a^2+a^3+a^4+a^5+a^6+....a^k #9)
(y-1)/a=1+a^1+a^2+a^3+a^4+a^5+....a^(k-1) #10) (y-1)/a+a^k=1+a^1+a^3+a^3+a^4+a^4+a^5+....a^k #11)
1+a^1+a^2+a^3+a^4+a^5+....a^k=y Therefore, #12) (y-1)/a+a^k=y #13) y-1+a^(k+1)=ya #14) y-ya=1-a^(k+1) #15) y(1-a)=1-a^(k+1) #16) y=(1-a^(k+1))/(1-a) Going back to the general case for
the loan formula in #6: #18)
y=[((1+i)^(n-1))+((1+i)^(n-2))+((1+i)^(n-3))+....+1] #19) y=(1-a^(k+1))/(1-a) #20) y=(1-((1+i)^n))/(-i) #21) y=(((1+i)^n)-1)/I Back to #6: #23) Fn=P((1+i)^n)-A[y] #24) Fn=P((1+i)^n)-A[(1-((1+i)^n))/i] Note: Fn=0, the last future value of the loan, when the loan is repaid, therefore, #25) 0=P((1+i)^n)-A[(((1+i)^n)-1)/i]
(at period n) #26) A[(((1+i)^n)-1)/i]=P((1+i)^n) #27) A=[P((1+i)^n)][i/(((1+i)^n)-1)] #27) A=Pi/(1-((1+i)^(-n))) We have it! Equation #27 is the formula used to calculate the periodic payment (A) for a loan of principal (P) at the periodic rate (i) for n periods. Here's a quick example: Solution: Formula is: A=10000(0.02)/(1-((1+0.02)^(-60))) A=200/(1-0.30478)=200/0.69522 A=287.68 Therefore, the monthly payment is $287.68. I hope you enjoyed this derivation! Regards, |
Copyright ©2025 Press One Publishing. All rights reserved. Use or purchase of any material at DebtSmart.com including but not limited to books, articles, and software is subject to the following disclaimer/warning. |